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Abstract
All indecomposable finite-dimensional representations of the homogeneous
Galilei group which when restricted to the rotation subgroup are decomposed
to spin-0, -1/2 and -1 representations are constructed and classified. These
representations are also obtained via contractions of the corresponding
representations of the Lorentz group. Finally, the obtained representations
are used to derive a general Pauli anomalous interaction term as well as to
deduce wave equations which describe Darwin and spin–orbit couplings of a
Galilei particle interacting with an external electric field.

PACS numbers: 11.10.−z, 02.20.−a
Mathematics Subject Classification: 81Rxx, 81Qxx

1. Introduction

Unlike what most physicists might think of, the mathematical structure of the representations
of the Galilei group is in many respects more complex and sophisticated than that of their
relativistic counterparts. This is perhaps also the reason why unitary irreducible representations
of the Poincaré group—the symmetry group of special theory of relativity—have been known
nearly 20 years earlier than those of the Galilei group, even though the Galilei principle of
relativity was discovered several centuries prior to the Einstein one.
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The Galilei group and its representations are described in the Lévy-Leblond masterful
survey [1] written almost 35 years ago. They form the group-theoretical basis for description
of various physical predictions in non-relativistic classical mechanics and electrodynamics
and in non-relativistic quantum mechanics as well (see also a more recent review [2]). These
predictions are generally more than just some approximations to the relativistic results since
only comparison of the predictions based on the Galilei group and its representations with those
on the Poincaré group can indicate which predictions have the origin in the non-relativistic
and which in the relativistic one. For instance, it was shown in [3, 4] and by Lévy-Leblond in
[1, 5, 6] that the concept of spin of particles and of magnetic moments of particles have the
origin already in the Galilean non-relativistic quantum mechanics and not as stated in many
textbooks as a consequence of relativistic effects.

In the Galilei invariant framework, we shall consider first free particles and then particles
interacting with external fields. The free particles can be described either by representations
of the Galilei group (irreducible in the case of elementary particles and indecomposable for
particles with internal structures) or, equivalently, by Galilei invariant wave equations. For
interacting particles, the wave equations are more appropriate since they allow us to introduce
interactions.

There exist three approaches how to formulate the Galilei invariant wave equations. The
first is based on the fact that the Galilei group and the Galilei invariant equations can be
obtained from the Poincaré group and Poincaré invariant equations, respectively, by a limiting
procedure—the so-called Inönü–Wigner contraction [7].

The second approach consists of first writing the Poincaré invariant equations in the
(4 + 1)-dimensional spacetime and then projecting them down to the (3 + 1)-dimensional
Newtonian spacetime using the fact that the extended Galilei algebra in (3 + 1) dimensions is
a subalgebra of the Poincaré algebra in (4 + 1) dimensions; for a connection of representations
of these algebras see [8]. This approach, referred here as a projecting one, has been developed
in [9–11] (see also [12]).

The third way to construct Galilei invariant theories consists in searching for these theories
directly using the requirement of Galilei invariance and knowledge of representations of the
Galilei group. We shall show in this paper that, in many respects, this latest approach is
the most powerful and comprehensive. Moreover, it allows us to construct such consistent
Galilei invariant equations of motion which are very difficult to derive using the contraction
or projection methods. On the other hand, the direct search for wave equations invariant
with respect to the inhomogeneous Galilei group needs a knowledge of the indecomposable
finite-dimensional representations of its homogeneous Galilei subgroup, which has not been
available till now.

Our paper serves the following four aims: (1) to describe all indecomposable finite-
dimensional representations of the homogeneous Galilei group that are defined on spinor,
scalar and vector representation spaces; (2) to specify all Galilei invariant bilinear forms,
which facilitate derivation of various nonlinear Galilei wave equations; (3) to specify the
reducible representations of the Lorentz group which lead to the found representations of the
Galilei group via contractions; (4) to determine the Galilean spinor wave equations which
include the Pauli anomalous terms.

In the next section, we define indecomposable finite-dimensional representations of the
homogeneous Galilei group in general.

In sections 3 and 4, some of these representations are constructed explicitly, namely all
those which when restricted to representations of the rotation subgroup of the homogeneous
Galilei group are decomposed to spin-0, -1/2 and -1 representations. In addition, we present
here also the complete list of bilinear forms invariant with respect to all found representations
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of the Galilei group. Section 5 contains various examples of the Galilean vectors. In section 6,
we obtain the previously found representations of the homogeneous Galilei group via the
Inönü–Wigner contraction of the corresponding representations of the Lorentz group. In
section 7, the found representations are used to deduce the most general form of the Pauli
interaction term which can be added to the Galilei invariant equation for spinors. Subsection
7.3 presents a simple Galilean system which describes the Darwin and spin–orbital interactions
of particles with an external electric field. Finally, section 8 is devoted to discussions of the
obtained results.

2. Definitions and properties of the Galilei group and its Lie algebra

The Galilei group G(1, 3) consists of the following transformations of time variable t and of
space variables x = (x1, x2, x3):

t → t ′ = t + a,

x → x′ = Rx + vt + b,
(1)

where a, b and v are real parameters of time translation, space translations and pure Galilei
transformations, respectively, and the matrix R specifies rotations determined by the three
parameters θ1, θ2, θ3.

The Galilei group includes a subgroup leaving invariant a point x = (0, 0, 0) at time t = 0.
It is formed by all space rotations and pure Galilei transformations, i.e., by transformations (1)
with a = b ≡ 0. This subgroup is said to be the homogeneous Galilei group HG(1, 3). It is a
semidirect product of the three-parameter commutative group of pure Galilei transformations
with the rotation group. This group is not compact and does not have unitary finite-dimensional
representations.

The Galilei group G(1, 3) is a semidirect product of its Abelian subgroup generated by
time and space translations with the homogeneous Galilei group HG(1, 3).

Unitary representations of the Galilei group which are ordinary ones were described by
Inönü and Wigner [3] in 1952, whereas those which are ray by Bargmann [4] in 1954. A nice
review of these representations can be found in [1], see also [14].

However, a decisive role in the description of various finite-component Galilei invariant
equations is played by finite-dimensional representations of the homogeneous Galilei group
HG(1, 3). They were first studied according to our knowledge in paper [15]. Moreover, they
have not been classified till now.

Let us recall that the representations of HG(1, 3) induce ray representations of the Galilei
group G(1, 3) as well as ordinary representations of the extended Galilei group Gm(1, 3)

which is a central extension of the Galilei group via a one-parameter subgroup. Both of them
are realized in the space of (square integrable) n-component functions �(t, x) which for any
transformation (1) cotransform in the following way [1]:

�(x, t) → � ′(x′, t ′) = eif (x,t)T �(x, t), (2)

where �(x, t) = column(�1(x, t), �2(x, t), . . . , �n(x, t)) are n-component vectors from the
representation space, T are n × n matrices depending on transformation parameters v and
θ = (θ1, θ2, θ3),

f (x, t) = m

(
v · x +

v2

2
t + c

)
is a phase which includes two parameters: m and c. For m = 0, the central extension is trivial
and representations (2) are ordinary representations of G(1, 3). For m different from zero,
the central extension is non-trivial and transformations (2) realize ray representations of the
Galilei group G(1, 3) and ordinary representations of Gm(1, 3). Moreover, the transformation
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matrices T realize finite-dimensional representations of the homogeneous Galilei group
HG(1, 3).

Let us mention that realizations (2) are precisely those which are used in quantum
mechanics and quantum field theory. These realizations are also essential to construct wave
equations invariant w.r.t. the Galilei group [12].

Taking expressions (2) corresponding to the infinitesimal transformations (1) and treating
c as an additional transformation parameter, we can calculate the 11-dimensional Lie algebra
of the extended Galilei group. Basis elements of this algebra are of the following form:

P0 = i∂0, Pa = −i∂a, M = Im,

Ja = −iεabcxb∂c + Sa,

Ka = −ix0∂a − mxa + ηa,

(3)

where indices a, b and c run over the values 1, 2, 3, I is the unit matrix, and Sa and ηa are
matrices which satisfy the following commutation relations:

[Sa, Sb] = iεabcSc, (4)
[ηa, Sb] = iεabcηc, (5)
[ηa, ηb] = 0, (6)

that is, they form a basis of the Lie algebra hg(1, 3) of the homogeneous Galilei group
HG(1, 3). This algebra is isomorphic to the Lie algebra e(3) of the Euclidean group.

Conditions (4)–(6) are necessary and sufficient in order generators (3) form a basis of a
Lie algebra, namely the extended Galilei algebra satisfying the following relations:

[Ja, Jb] = iεabcJc, [Ja,Kb] = iεabcKc,

[Ja, Pb] = iεabcPc, [Ka, P0] = iPa,

[Ka, Pb] = iδabM, [Ka,Kb] = 0,

[Pa, Pb] = 0, [P0, Pa] = 0,

[M,P0] = 0, [M,Pa] = 0, [M,Ja] = [M,Ka] = 0.

(7)

Unfortunately, the problem of a complete classification of non-equivalent finite-
dimensional indecomposable realizations of algebra (4)–(6) appears to be an unsolvable
‘wild’ algebraic problem. However, we shall show that this problem can be completely
solved in the two important particular cases: for the purely spinor representations and vector
representations. Notice that indecomposable representations of Lorentz and Poincaré groups
were studied a long time ago, see paper [16] and references therein.

3. Spinor representations

The Lie algebra hg(1, 3), defined by relations (4)–(6), includes the subalgebra so(3) spanned
on the basis elements S1, S2 and S3. Without loss of generality, we suppose that representations
of this subalgebra are Hermitian and completely reducible and shall search for representations
of hg(1, 3) in the so(3) basis in which the Casimir operator of so(3) is diagonal.

Irreducible representations of so(3) are labelled by integers or half-integers s. Let s̃ be
the highest value of s which appears in the decomposition of a reducible representation of
so(3) subduced by the indecomposable representation of hg(1, 3). We shall call the related
carrier space of this representation of hg(1, 3) the representation space of spin s̃.

Note that it is reasonable to search for representations with integer and half-integer s̃

separately since neither rotations generated by spin matrices Sa nor Galilean boosts generated
by matrices ηa can mix states with integer and half-integer spins. It is the general property of
matrices satisfying relations (4), (5) [13].



Galilei invariant theories: I 9369

Consider finite-dimensional indecomposable representations of algebra hg(1, 3) of spin
s̃ = 1

2 . Then the corresponding matrices S1, S2 and S3 can be decomposed to a direct sum of
the irreducible representations D(1/2) of algebra so(3):

Sa = 1
2In×n ⊗ σa, (8)

where In×n is the n × n unit matrix with a finite n and σa are the usual Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

From (8) and (5), the generic form of the related matrices ηa is

ηa = An×n ⊗ σa, (9)

where An×n is an n × n matrix. The commutativity of matrices (9) leads to the nilpotency
condition

A2
n×n = 0. (10)

Thus, without any loss of generality, An×n may be expressed as a direct sum of 2 × 2 Jordan
cells and zero matrix.

Because of (10) there exist only two different indecomposable representations of algebra
hg(1, 3) defined on spin-1/2 carrier space:

Sa = 1
2σa, ηa = 0

and

Sa = 1

2

(
σa 0
0 σa

)
, ηa = 1

2

(
0 0
σa 0

)
. (11)

The corresponding vectors from the representation space are two-component spinors ϕ(x, t),

as well as four-component bispinors � = (
ϕ1(x,t)

ϕ2(x,t)

)
with two-component ϕ1 and ϕ2, respectively.

When t and x undergo a Galilean transformation (1), then ϕ cotransforms as

ϕ(x, t) → ϕ′(x′, t ′) = eim(v · x+v2t/2+c)
(

cos
θ

2
+ i

σ · θ

θ
sin

θ

2

)
ϕ(x, t)

while the transformation law for components of Galilean bispinor is

ϕ1(x, t) → ϕ′
1(x

′, t ′) = eim(v · x+v2t/2+c)
(

cos
θ

2
+ i

σ · θ

θ
sin

θ

2

)
ϕ1(x, t),

ϕ2(x, t) → ϕ′
2(x

′, t ′) = eim(v · x+v2t/2+c)
((

cos
θ

2
+ i

σ · θ

θ
sin

θ

2

)
ϕ2(x, t)

+
1

2

(
iσ · v cos

θ

2
− (θ · v + iσ · θ × v)

sin θ
2

θ

)
ϕ1(x, t)

)
.

We use the notation θ =
√

θ2
1 + θ2

2 + θ2
3 . Invariants of these transformations which are

independent of t and x are arbitrary functions of ϕ†ϕ, ϕ
†
1ϕ1 and ϕ

†
1ϕ2 + ϕ

†
2ϕ1.

4. Vector representations

In this section, we examine the finite-dimensional indecomposable representations of the
algebra hg(1, 3) defined on vector, or spin-1, representation spaces. The corresponding
matrices Sa can be expressed as direct sums of spin-1 and spin-0 matrices:

Sa =
(

In×n ⊗ sa ·
· 0m×m

)
. (12)
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The symbols In×n and 0m×m denote the n×n unit matrix and m×m zero matrix, respectively,
sa(a = 1, 2, 3) are 3 × 3 matrices of spin equal to 1 for which we choose the following
realization:

s1 =

0 0 0

0 0 −i
0 i 0


 , s2 =


 0 0 i

0 0 0
−i 0 0


 , s3 =


0 −i 0

i 0 0
0 0 0


 . (13)

The general form of matrices ηa which satisfy relations (5) with matrices (12) is given by
the following formulae (see e.g. [13]):

ηa =
(

A ⊗ sa B ⊗ k
†
a

C ⊗ ka 0m×m

)
. (14)

A,B and C are matrices of dimensions n× n, n×m and m× n, respectively, and ka are 1 × 3
matrices of the form

k1 = (i, 0, 0) , k2 = (0, i, 0) , k3 = (0, 0, i) . (15)

The matrices (12) and (14) satisfy conditions (5) with any A,B and C. Substituting (14)
into (6) and using the relations

sak
†
b = iεabck

†
c, kasb = iεabckc,

[sa, sb] = k
†
akb − k

†
bka = iεabcsc,

kak
†
b − kbk

†
a = 0,

we obtain the following equations for matrices A,B and C:

A2 + BC = 0, (16)
CA = 0, AB = 0. (17)

We note that relations (16) are invariant w.r.t. the following transformations:

A → A′ = αWAW−1, B → B ′ = αWBV −1, C → C ′ = αV CW−1, (18)

where α is a complex non-zero multiplier, and W and V are invertible matrices of dimensions
n × n and m × m, respectively. Sets of matrices {A,B,C} and {A′, B ′, C ′} connected by
relations (18) will be treated as equivalent.

The solution of the matrix problem defined by equations (16) and (17) is relatively easy
to handle; the detailed calculations are presented in the appendix. Namely, there exist ten
non-equivalent indecomposable sets of matrices {A,B,C}, which can be labelled by triplets
of numbers n,m, λ where n and m take the values

−1 � (n − m) � 2, n � 3 (19)

and define dimensions of these matrices as in equation (14), λ = RankB, whose values are

λ =



0, if m = 0,

1, if m = 2 or n − m = 2, m �= 0,

0, 1, if m = 1, n �= 3.

(20)

The list of non-equivalent sets of indecomposable matrices {A,B,C} is given in
lemma 2 and the related matrices Sa and ηa are given in table 1.

Any set of matrices Sa, ηa given in table 1 yields a finite-dimensional indecomposable
representation of algebra hg(1, 3) which generates a representation of the extended Galilei
algebra via (3). From our analysis, there exist ten indecomposable vector representations of
hg(1, 3).

The finite transformations corresponding to these realizations are found by integrating the
Lie equations for generators given in (3) and table 1. For a specific representation D(n,m, λ),
they have the following forms.
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Table 1. Vector representations: spin matrices Sa and boost matrices ηa where sa and ka are
matrices (13).

Representation
D(n, m, λ) Sa ηa

D(0, 0, 0) 0 0
D(1, 0, 0) sa 03×3

D(1, 1, 0)

(
sa 03×1

01×3 0

) (
03×3 03×1

ka 0

)

D(1, 1, 1)

(
sa 03×1

01×3 0

) (
03×3 k

†
a

01×3 0

)

D(1, 2, 1)


 sa 01×3 01×3

03×1 0 0
03×1 0 0





03×3 k

†
a 03×1

01×3 0 0
ka 0 0




D(2, 0, 0)

(
sa 03×3

03×3 sa

) (
03×3 03×3

sa 03×3

)

D(2, 1, 0)


 sa 03×3 03×1

03×3 sa 03×1

01×3 01×3 0





03×3 03×3 03×1

sa 03×3 03×1

ka 01×3 0




D(2, 1, 1)


 sa 03×3 03×1

03×3 sa 03×1

01×3 01×3 0





03×3 sa k

†
a

03×3 03×3 03×1

01×3 01×3 0




D(2, 2, 1)




sa 03×3 03×1 03×1

03×3 sa 03×1 03×1

01×3 01×3 0 0
01×3 01×3 0 0







03×3 03×3 03×1 03×1

sa 03×3 k
†
a 03×1

01×3 01×3 0 0
ka 01×3 0 0




D(3, 1, 1)




sa 03×3 03×3 03×1

03×3 sa 03×3 03×1

03×3 03×3 sa 03×1

01×3 01×3 01×3 0







03×3 03×3 03×3 03×1

sa 03×3 03×3 03×1

03×3 sa 03×3 k
†
a

−ka 01×3 01×3 0




• D(0, 0, 0): the related representation space is formed by a field S invariant under rotations
and which transforms under a Galilean boost as

S → eimf S, (21)

where f = v · x + v2t/2. Such transformations keep invariant the bilinear form I1 = S∗S.
• D(1, 0, 0): the Galilean 3-vectors R = column(R1, R2, R3) transform as vectors under

rotations:

R → R cos θ +
θ × R

R
sin θ +

θ(θ · R)

θ2
(1 − cos θ),

and via

R → eimf R, (22)

under the Galilean boosts. Then, the bilinear form I2 = R∗ · R is invariant under Galilean
transformations.

• D(1, 1, 0): Galilean 4-vector �4 = (U, S), where U is a vector and S is a scalar under
the rotation transformations. The action of Galilean boosts on U and S can be written as

U → eimf (U + vS),

S → eimf S.
(23)

The corresponding invariant of Galilei group is of the form I1 = S∗S.
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• D(1, 1, 1): the second Galilean 4-vector �̃4 = (R, P ), where R and P transform under
the Galilean boost as

R → eimf R,

P → eimf (P + v · R).
(24)

The invariant form for these (and rotation) transformations can be written as I2 = R∗ · R.
• D(1, 2, 1): the Galilean 5-vector �5 = (S, U,Q), where S and Q are scalars and U is a

vector with respect to rotations. Under a Galilean boost, they transform as

S → eimf S,

U → eimf (U + vS),

Q → eimf
(
Q + v · U + 1

2 v2S
)
,

(25)

and the invariants of these transformations are I2 = S∗S and I3 = S∗Q + SQ∗ − U∗U.
• D(2, 0, 0): the Galilean 6-vectors (bi-vectors) �6 = (R, W), which under the Galilean

boosts transform as
R → eimf R,

W → eimf (W + v × R),
(26)

and the corresponding invariants are I2 = R∗ · R and I4 = R∗ · W + R · W∗.
• D(2, 1, 0): the Galilean 7-vectors �7 = (R, W, P ). Under the Galilean boost, its

components transform according to

R → eimf R,

P → eimf (P + v · R),

W → eimf (W + v × R).

(27)

The corresponding invariants are the same as the previous case: I2 = R∗ · R and
I4 = R∗ · W + R · W∗.

• D(2, 1, 1): the second 7-vector �̃7 = (K, R, S) with K being a 3-vector which under the
Galilean boost transforms as

K → eimf (K + v × R + vS) , (28)

and with R, S which transform as

S → eimf S, R → eimf R. (29)

The corresponding invariants are I1 = S∗S and I2 = R∗ · R.
• D(2, 2, 1): Galilean 8-vector �8 = (R, K, P , S), whose components with the Galilean

boost transform as
S → eimf S, R → eimf R,

K → eimf (K + v × R + vS) ,

P → eimf (P + v · R).

(30)

The invariants of these transformations are I1 = S∗S, I2 = R∗ · R and I5 = S∗P +SP ∗ −
K · R∗ − K∗ · R.

• D(3, 1, 1): the 10-vector fields �10 = (R, W, N, P ) combine three 3-vectors R, W, N
and one scalar P. They cotransform under the boost transformations via

R → eimf R,

W → eimf (W + v × R),

N → eimf
(
N + v × W + vP + v(v · R) − 1

2 v2R
)
,

P → eimf (P + v · R).

(31)

The invariants of these transformations are I2 = R∗ · R, I4 = R∗ · W + R · W∗ and
I6 = P ∗P + W · W∗ − R · N∗ − N · R∗. In section 7, we shall utilize this vector in the
Galilean electromagnetism.
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Thus, in addition to Galilean scalar S, there exist nine Galilean vectors enumerated in the
above items. We see that the number of such vectors is notably larger than in the case of
proper Lorentz group, where there are only three irreducible multiplets whose components
transform as vectors or scalars under rotations, namely a 4-vector and self-dual and anti-self-
dual components of an antisymmetric tensor [17].

5. Examples of Galilean vectors

In the previous section, we have described finite-dimensional indecomposable Galilean vectors
and presented explicitly their group transformations and invariants. They form the main tool
for constructing various Galilei invariant models. In particular, by using the realizations
of matrices Sa and ηa given in table 1, it is possible to describe all non-equivalent Galilei
invariant first-order partial differential equations for vector fields. Here we present some
important examples of Galilean vectors.

Example 1. Generators P0 and Pa of time and space translations defined by relations (7) and
mass m form a Galilean 5-vector of type �5 provided we identify P0 ∼ Q, P ∼ U,m ∼ S.
For m = 0, this 5-vector is reduced to a 4-vector of type �̃4.

Example 2. 5-potential of the Galilean electromagnetic field [18] Â = (A0, A, A4) with the
transformation law

A′ = A + vA4,

A′
0 = A0 + v · A + 1

2 v2A4,

A′
4 = A4

(32)

is an example of Galilean 5-vector field with zero mass, which is a carrier space of the
representation D(1, 2, 1) described in table 1.

Example 3. The field strength tensor of the Galilean electromagnetic field

Fµν = ∂µAν − ∂νAµ, (33)

where µ, ν = 0, 1, 2, 3, 4 and by definition ∂4Aµ = 0, is the example of massless 10-vector
which transforms in accordance with (31). The explicit relation between components of Fµν

and �10 is given by the following formula:

Fµν =




0 −N1 −N2 −N3 P

N1 0 W3 −W2 R1

N2 −W3 0 W1 R2

N3 W2 −W1 0 R3

−P −R1 −R2 −R3 0


 , (34)

where

P = ∂0A4,

W = ∇ × A,

N = ∇A0 − ∂0A,

R = ∇A4.

(35)

Some subsets of components of Fµν form carrier spaces for other representations of the
Galilei group. For example, if Ra = F4a ≡ 0 then the remaining components of Fµν transform
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as a 7-vector of type �7. The complete list of various vectors which can be formed using
components of Fµν is presented in section 7.

Example 4. As another example of a Galilean field can be considered the matrix 5-vector
�5 = (S, U1, U2, U3,Q) with components

S = β0 = 1√
2
(γ0 + γ4),

Q = β4 = 1√
2
(γ0 − γ4),

Ua = βa = γa,

(36)

where γµ are Dirac matrices, µ = 0, . . . , 4, a = 1, 2, 3. Such a set of matrices commutes as
a 5-vector with the Galilei generators (3) if we choose

Sa = 1
4εabcγbγc, ηa = 1

2
√

2
(γ0 + γ4) γa. (37)

Example 5. As in the previous two examples, the matrix tensor

Sµν = βµβν − βνβµ (38)

transforms like Fµν , that is, as a 10-vector. Moreover, it is possible to form the following
matrix vectors:

�̃4 : (Ra = S0a, P = S40),

�̃6 :
(
Wa = 1

2εabcSbc, Ra = S0a

)
,

�̃7 :
(
Ra = S0a,Wa = 1

2εabcSbc, P = S40
)
.

(39)

6. Contractions of representations of Lorentz algebra

It is well known that the Galilei group (algebra) and (some of) its representations can be
obtained from the Poincaré group (algebra) and its appropriate representations by a limiting
procedure called ‘contraction’. The process of contraction has, by now, an extensive literature.
First, it was proposed for Lie algebras by Segal [19] and in more specific forms by Inönü and
Wigner [7], by Saletan [20], by Doebner and Melsheimer [21] and many others; see the
excellent review article of Lôhmus [22] and references cited therein. A more recent review
can be found in [23].

The Lie algebra of a given Lie group is defined via commutation relations for basis
elements. As shown by Cartan, whenever we change the basis by a non-singular transformation
we come to algebra isomorphic to the original one. However, if the transformation is singular, a
new algebra may be received, provided this transformation leads to well-defined commutation
relations for the transformed basis elements.

In the simplest case, a contraction is a limit procedure which transforms an N-dimensional
Lie algebraL into an non-isomorphic Lie algebraL′, also with N dimensions. The commutation
relations of a contracted Lie algebra L′ are given by

[x, y]′ ≡ lim
ε→ε0

W−1
ε ([Wε(x),Wε(y)], (40)

where Wε ∈ GL(N, k) is a non-singular linear transformation ofL′, with ε0 being a singularity
point of its inverse W−1

ε .
The papers [19–23] indicate different ways of performing this (and more general) singular

transformation and necessary and sufficient conditions that a given Lie algebra can be
contracted into another one. However, there is no regular way to obtain representations
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of the contracted algebra starting with the representations of the initial one. Namely, in
contracting representations we meet the following difficulties of principle:

(i) Contracting the faithful representation of a given Lie algebra, we obtain in general a
non-faithful representation of the resulting Lie algebra since a part of generators is represented
trivially.

(ii) The resulting (contracted) algebra is always non-compact. Hence, any contraction
of a Hermitian irreducible representation of some compact Lie algebra, which is always
finite dimensional, has to yield at the end an infinite-dimensional Hermitian irreducible
representation of the non-compact Lie algebra.

Inönü and Wigner in [7] mentioned possible ways of treating the difficulties, one of them
will be used in the following.

There is a simple contraction procedure (the Inönü–Wigner contraction) connecting the
Lie algebra so(1, 3) of the Lorentz group with algebra hg(1, 3). The related transformation W

does not change basis elements of so(1, 3) forming its subalgebra so(3) while the remaining
basis elements are multiplied by a small parameter ε which tends to zero [7].

Contractions of Lie groups and their representations with the coordinate free method were
studied in [24] where contraction of representations of the de Sitter group was carried out.

Here we find representations of the Lorentz group whose contraction makes it possible
to obtain found realizations of the homogeneous Galilei group. A specific feature of these
representations is that they are in a general case completely reducible while the corresponding
contracted representations of the Galilei algebra are indecomposable ones.

Let Sµν, µ, ν = 0, 1, 2, 3 are matrices realizing a representation of the Lorentz algebra,
i.e., satisfying the relations

[Sµν, Sλσ ] = i(gµλSνσ + gνσ Sµλ − gνλSµσ − gµσSνλ) (41)

with gµν = diag(1,−1,−1,−1). The contraction procedure consists in transition to a new
basis

Sab → Sab, S0a → εS0a

and simultaneous transformation of all basis elements Sµν → S ′
µν = USµνU

−1 with a matrix
U depending on ε. Moreover, u should depend on ε in a tricky way, such that all the transformed
generators S ′

µν are kept non-trivial when ε → 0 [7].
We suppose that representations obtained by the contraction are indecomposable

representations D(n,m, λ) described in section 4. To construct representations of Lorentz
algebra which can be contracted to representations D(n,m, λ), we use the following
observation.

Lemma 1. Let {Sa, ηa} be an indecomposable set of matrices realizing one of
the representations D(1, 1, 0),D(1, 1, 1),D(1, 2, 1),D(2, 0, 0) or D(3, 1, 1) presented in
table 1. Then matrices

Sab = εabsSc, S0a = ν
(
ηa − η†

a

)
, (42)

where ν = 1 for representations D(1, 1, 0),D(1, 1, 1)D(2, 0, 0) and ν = 1√
2

for
representations D(1, 2, 1),D(3, 1, 1), form a basis of the Lie algebra of the Lorentz group.

The proof is reduced to the direct verification that for all basis elements Sa, ηa of the
homogeneous Galilei algebra the corresponding linear combinations (42) satisfy relations
(41), i.e., do form a basis of the Lorentz algebra.

For representations D(1, 0, 0), (D(2, 1, 1),D(2, 1, 0)) and D(2, 2, 1), the related
matrices (42) do not form a basis of the Lie algebra. Nevertheless, it is possible to find
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Table 2. Representations of the Lorentz algebra and contracting matrices.

Representations of Representations of Basis elements Contracting
algebra hg(1, 3) algebra so(1, 3) Sµν matrix U

D(1, 0, 0) D(1, 0) (43) I3×3

D(1, 1, 0) D
(

1
2 , 1

2

)
(42)

(
I3×3 03×1

01×3 ε−1

)

D(1, 1, 1) D
(

1
2 , 1

2

)
(42)

(
I3×3 03×1

01×3 ε

)

D(1, 2, 1) D
(

1
2 , 1

2

)
⊕ D(0, 0) (42)


I3×3 03×1 03×1

01×3 ε 0
01×3 0 ε−1




D(2, 0, 0) D(0, 1) ⊕ D(1, 0) (42)

(
I3×3 03×3

03×3 ε−1I3×3

)

D(2, 1, 0) D
(

1
2 , 1

2

)
⊕ D(1, 0) (44)


I3×3 03×3 03×1

03×3 ε−1I3×3 03×1

01×3 01×3 ε−1




D(2, 1, 1) D
(

1
2 , 1

2

)
⊕ D(1, 0) (44)


I3×3 03×3 03×1

03×3 εI3×3 03×1

01×3 01×3 ε




D(2, 2, 1)
D

(
1
2 , 1

2

)
⊕

D(0, 0) ⊕ D(0, 0)
(45)




I3×3 03×3 03×1 03×1

03×3 ε−1I3×3 03×1 03×1

01×3 01×3 1 0
01×3 01×3 0 ε−1




D(3, 1, 1)
D(0, 1) ⊕ D(1, 0)

⊕D
(

1
2 , 1

2

) (42)




I3×3 03×3 03×3 03×1

03×3 ε−1I3×3 03×3 03×1

03×3 03×3 ε−2I3×3 03×1

01×3 01×3 01×3 ε−1




the corresponding generators of the Lorentz algebra starting with its known representations
of dimensions 3 × 3, 7 × 7 and 8 × 8, respectively. We choose these representations in the
following forms:

Sab = εabcsc, S0a = isa, (43)

Sab = εabc


 sc 03×3 03×1

03×3 sc 03×1

01×3 01×3 0


 , S0a = 1

2


 isa −sa i

√
2k

†
a

sa isa −√
2k

†
a

i
√

2ka

√
2ka 0


 (44)

and

Sab = εabc




sc 03×3 03×1 03×1

03×3 sc 03×1 03×1

01×3 01×3 0 0
01×3 01×3 0 0


 , S0a = 1

2




isa −sa ik†
a k

†
a

sa isa −k
†
a ik†

a

ika ka 0 0
−ka ika 0 0


 , (45)

where sa and ka are matrices given by equations (13) and (15).
Matrices (42)–(45) form bases of representations of the Lorentz algebra which are

in general reducible. These representations (together with the related realizations of the
homogeneous Galilei algebra given in table 1) are enumerated in table 2.

Thus, we obtain the indecomposable representations of the Lie algebra of the
homogeneous Galilei group starting with finite-dimensional representations of the Lorentz
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algebra so(1, 3) and applying the contraction procedure. Special features of this approach are
summarized in the following items.

• To obtain indecomposable representations of algebra hg(1, 3) found in section 4, we were
supposed to use completely reducible representations of the Lorentz algebra.

• It is possible to obtain different non-equivalent realizations of hg(1, 3) starting with a
given representation of so(1, 3). For example, both realizations D(2, 1, 0) and D(2, 1, 1)

can be obtained via contractions of the representation D
(

1
2 , 1

2

) ⊕ D(1, 0).
• It is possible to obtain a given representation of hg(1, 3) via contraction of different

representations of so(1, 3). For example, the above-mentioned representation D
(

1
2 , 1

2

) ⊕
D(1, 0) can be replaced by D

(
1
2 , 1

2

) ⊕ D(0, 1), or, more generally, any representation
D(m, n) of so(1, 3) can be replaced by D(n,m).

7. Galilean linear spin-1/2 wave equation with Pauli anomalous interaction

The complete list of indecomposable spinor and vector representations of algebra hg(1, 3)

found in sections 3 and 4 can be used to construct Galilei invariant models for spinor and
vector fields both linear and nonlinear ones. In particular, these representations can be applied
to derive systems of equations invariant with respect to the Galilei group.

In this section, we apply them to describe possible Pauli-type interactions for spinor field
invariant with respect to the Galilei group.

7.1. Reduction approach

Consider the Dirac equation describing a fermionic field ψ(x) coupled to a gauge field Aµ

and a Pauli anomalous term:

(γµπµ + k[γ µ, γ ν]Fµν − λ)ψ(x) = 0, (46)

where

πµ ≡ pµ − qAµ

and the second term is the Pauli anomalous term.
A natural way to construct a Galilean analogue of equation (46) is to generalize it to the

case of (4, 1)-dimensional space and then make the reduction discussed in section 1. However,
in this case it is desirable to present a clear physical interpretation for all values obtained by the
reduction. In addition, in this way we cannot obtain the most general Pauli interaction term.
Thus, we consider two possibilities: the reduction of equation defined in (4, 1)-dimensional
space and a direct search for the Pauli term invariant under the Galilei group.

In order to perform the reduction, it is sufficient to change in (46) the Dirac matrices to
their Galilean analogues, i.e., to change γµ → βµ where βµ are defined by relations (36). In
particular, they may be chosen as [25]

β0 =
(

0 0

−√
2 0

)
, βa =

(
σa 0
0 −σa

)
, β4 =

(
0

√
2

0 0

)
.

If we substitute these matrices into equation (46) for ψ = (
φ

χ

)
(where φ and χ are two-

component spinors) and use the notations (34), we find

(σ · π − λ + 4ikσ · W + 4kP ]ϕ +
√

2(π4 + 4kσ · R)χ = 0,√
2(π0 − 4kσ · N)ϕ + (σ · π + λ − 4ikσ · W + 4kP )χ = 0,

(47)
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where π4 = m − qA4. Solving the first of equations (47) for χ and substituting the solution
into the second line, we come to the Schrödinger equation with spin-dependent potential which
is not discussed here.

In the magnetic limit, defined as in [18],

(Am, φm) ↪→ Am = (A0, Am,A4) = (−φm, Am, 0) , (48)

we find

Bm = W = ∇ × Am,

Em = N = −∇φm − ∂tAm.

Note that R = 0 and P = 0, and Galilei transformations for Am, φm, Bm and Em have the
form

Am → Am, φm → φm − v · Am,

Bm → Bm, Em → Em + v × Bm.
(49)

With these definitions, equation (47) becomes

(σ · (π − qAm) − λ + 4ikσ · Bm)ϕ +
√

2mχ = 0,√
2(p0 + qφm − 4kσ · Em)ϕ + [σ · (π − qAm) + λ − 4ikσ · Bm]χ = 0.

This may be rewritten as

[βµπµ − λ + 2k(S · Bm + η · Em)]ψ = 0, (50)

where S and η are matrix vectors whose components are given in equation (37).
Thus, we obtain in a rather elegant way equation (50) which is manifestly Galilei invariant

and describes both the minimal and anomalous couplings of a particle of spin 1/2 with an
external Galilean electromagnetic field of magnetic type. In the case k = 0, i.e., when only
the minimal interaction is present, this equation is equivalent to the Lévy-Leblond equation.
However, it presents only one of the many possibilities of introducing anomalous coupling into
the Lévy-Leblond equation. A more general approach is presented in the following subsection.

7.2. Direct approach

Anomalous Pauli interaction is represented in equation (46) by the term k[γµ, γν]Fµν , which
is linear with respect to the electromagnetic field strength Fµν . It is possible to show that the
requirement of relativistic invariance defines this term in a unique way (up to a value of the
coupling constant k).

In contrast to the above, in the Galilei invariant approach there are more possibilities of
introducing the anomalous interaction. In this subsection, we use our knowledge of Galilean
vector field (refer to section 4) to find the most general form of anomalous interaction for
Galilean spinors.

First, we recall that there exist two types of massless Galilean 4-vector fields, i.e., �4

and �̃4, whose transformation properties are defined by equations (23) and (24) with m = 0,
and a 5-vector �5 which transforms as given in (32). In other words, we have three types of
potentials of external vector field which can be used to introduce the minimal interaction into
the Lévy-Leblond equation, and they are potentials which generate field strengths involved
into anomalous interaction terms whose examples are present in the previous subsection.

We note that in addition it is possible to introduce minimal and anomalous interactions
with fields whose potentials are 3-vectors or scalars. Moreover, the Galilei invariance condition
admits some constrains for the potentials which generate additional possible anomalous
interactions.
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Let us start with the vector �̃4 which corresponds to the magnetic limit field considered
in the previous section and find the most general Galilean scalar matrix F linear in Bm and
Em. Expanding F via the complete set of matrices βµ (36) and Sµν (38) with well-defined
transformation properties and using (49), we easily find that F = 2k(S · Bm + η · Em) +
gη · Bm where k and g are arbitrary parameters. In other words, we come to the following
Galilei invariant equation for spinor field with the minimal and anomalous interaction:

[βµπµ − λ + 2k (S · Bm + η · Em) + gη · Bm]ψ = 0. (51)

In contrast to (50), equation (51) includes two coupling constants, k and g.
The other Galilean limit, named ‘electric limit’ [6] for the electromagnetic field,

corresponds to the gauge fields of type �4, i.e., the related vector potential

(Ae, φe) ↪→ Ae = (A0, A, A4) = (0, Ae, φe) , (52)

and field strengths Be = ∇ × Ae, Ee = −∇φe,� = ∂0φ transform as

Ae → Ae + vφe, φe → φe

Ee → Ee, Be → Be − v × Ee, � → � − v · Ee.
(53)

Searching for the related Galilean Dirac equation with a general Pauli interaction term and
using the fact that the vectors (Be,−Ee) have the same transformation properties as (Em, Bm),
we conclude that to achieve our goal it is sufficient to change Em → Be and Bm → −Ee

in (51) and add the additional invariant term γ0� + γ · Ee. In addition, to keep the Galilei
invariance we should introduce the minimal interaction in the following manner:

π0 = i∂0, πa = −i∂a − q(Ae)a, π4 = m + qφe.

As a result, we obtain

(βµπµ − λ + 2k (η · Be − S · Ee) + gη · Ee + r(β0φe + γ · Ee))ψ = 0. (54)

Thus, there exist at least two ways to describe anomalous interaction in the Galilei invariant
approach, presented by equations (51) and (54). Equation (51) includes two coupling constants
while in (54) the number of such constants is equal to 3.

Note that transformation laws (49) enable us to impose in (51) the Galilei invariant
condition Am = 0 on the vector potential. Thus, there exist one more Galilei invariant
equation with anomalous interaction, namely

[β0(p0 + qφ) − γ · p − β4m + 2kη · ∇φ] ψ = 0. (55)

Analogously, starting with (54) taking into account that transformations (53) are
compatible with the condition φe = 0 we come to one more Galilei invariant equation with
Pauli interaction term, namely

(β0∂0 − γ · π − β4m − λ + gη · B) ψ = 0, (56)

where π = −i∇ − qA, B = ∇ × A.
Gauge invariant fields E = −∇φ and B = ∇ × A present in equations (55) and (56) can

be interpreted as external electric and magnetic fields.
Consider also the case where the potential of the external field forms a 5-vector, and

related field strengths are given by formulae (33)–(35). We will not discuss possible physical
interpretation of the corresponding ten-component vector field but mention that there exists a
formal possibility of introducing the anomalous interaction with it by generalizing the Galilean
Dirac equation to the following one:

(βµπµ + k[βµ, βν]Fµν + gηaRa + r(SaRa + ηaUa) − λ)ψ(x) = 0, (57)

with three coupling constants k, g, r additional to q.
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Like equation (46) with γ -matrices (47), equation (57) is Galilei invariant but is quite
more general.

Finally, let the external field is defined by a 5-vector potential satisfying the Galilei
invariant constraint

∂aA4 = 0, (58)

then F4a ≡ 0 and tensor Fµν (34) is reduced to the 7-vector �̃7 = (K, R, A) whose components
are

K = ∇A0 − ∂0A, R = ∇ × A, A = ∂0A4.

To find the corresponding invariants linear in Fµν , it is necessary to construct invariant
scalar products of vector functions (58) and matrices (39) belonging to �̃7. As a result, we
come to the following equation:

(βµπµ + gηaRa + r(SaRa + ηaKa + S04A) + νβ0A − λ)ψ(x) = 0, (59)

where g, r and ν are coupling constants. For A = 0, equation (59) is reduced to equation (51)
which describes anomalous interaction of the Galilei particle of spin 1/2 with an external field
of magnetic type.

Formulae (51), (54)–(57) and (59) present all non-equivalent Galilean invariant equations
for spinor field, describing minimal and anomalous interactions with external gauge fields.

We see that the direct search for the Galilei invariant Pauli interaction makes it possible
to find a more general coupling than the reduction method.

7.3. Galilean system with spin–orbit coupling

In this section, we consider one of the described systems and discuss its physical content.
Let us start with equation (55) which describes interaction of the Galilean spinor particle

with an external electric field. Choosing β-matrices in the form (47) and denoting k = − qk̂

4m
,

we write this equation componentwise

(σ · p − λ)ϕ +
√

2mχ = 0,

√
2

(
p0 + qφ +

qk̂

m
σ · E

)
ϕ + (σ · p + λ)χ = 0,

where E = −∇φ.
Solving the first equation for χ and substituting the result into the second equation, we

obtain

Lϕ ≡
(

p0 − p2 + λ2

2m
+ qφ − qk̂

m
σ · E

)
ϕ = 0. (60)

In other words, we come to the Galilei invariant Schrödinger equation with a matrix
potential.

To analyse the physical content of equation (60), we transform it to a more familiar form
using the operator U = exp

(− ik̂
m

σ · p
)
. Applying this operator to ϕ and L, we obtain the

equation L′ϕ′ = 0 where ϕ′ = Uϕ,

L′ = ULU−1 = p0 − p2

2m
+ qφ − λ2

2m
− qk̂2

2m2
(σ · (p × E − E × p) − divE) + · · · ,

where the dots denote the terms of order o
(

1
m3

)
.
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All terms in the operator L′ have exact physical meaning. In particular, the last two terms
describe spin–orbit and Darwin couplings of a Galilean particle with an external field.

8. Discussion

The relativity principle is one of the corner stones of modern physics. Moreover, it should
be applied not only while considering phenomena characterized by circumlight velocities but
also in the cases where the velocities are small in comparison with the velocity of light. In
the latest case, any well-formulated physical theory should not be simply ‘non-relativistic’,
but should satisfy the Galilei relativity principle. In other words, the group of motion of the
special relativity (i.e., the Lorentz group) should be replaced by the Galilei group.

It appears that a consistent use of the Galilei group and its representations in many aspects
is much more complicated than in the case of Poincaré group. In particular, description
of finite-dimensional representations of the homogeneous Galilei group is a wild algebraic
problem while such representations for the Lorentz group have been found long time ago.

The main goal of the present paper was to present the complete classification of
indecomposable Galilean fields which transform as vectors or are scalars with respect to
the rotation transformations. In other words, we present the classification of indecomposable
finite-dimensional representations of the homogeneous Galilei group which being reduced to
the rotation subgroup correspond to spins s � 1. In contrast to the fields with spin s > 1,
the Galilean vectors’ field can be described completely. The results of this classification are
presented in section 3.

In contrast to the Lorentz vectors, the number of non-equivalent Galilean vectors appears
to be rather extended. Namely, for the Lorentz group there exist the following indecomposable
vector fields: 4-vector, bi-vector (i.e., antisymmetric tensor of second rank) and two 3-vectors
which are nothing but self-dual and anti-self-dual parts of the antisymmetric tensor. In the
case of Galilei group, it is possible to indicate nine indecomposable vector fields.

We use our knowledge of vector representations of the Galilei group to describe all possible
Pauli interactions for spinor fields, compatible with the Galilei invariance. The number of
such interactions appears to be rather extended in contrast to the relativistic approach where
this interaction is unique up to the coupling constant. We show that there exist such Galilei
invariant systems which describe spin–orbit and Darwin couplings which are traditionally
treated as pure relativistic effects. A collection of other Galilean systems with spin–orbit
coupling can be found in [14].

It is generally accepted to think that the Galilei group and its representations can easily
be obtained starting with representations of the Lorentz group and making the Inönü–Wigner
contraction [7]. We had shown that this procedure is not too straightforward in as much
as starting with indecomposable representations of the Lorentz group we can obtain only a
part of the corresponding representations of the homogeneous Galilei group. On the other
hand, it is possible to contract completely reducible representations of the Lorentz group to
indecomposable representations of the homogeneous Galilei group.

The complete list of vector–scalar and spinor indecomposable representations presented
in sections 3 and 4 opens a way to construct Galilei invariant models for scalar, spinor and
vector fields. For this purpose, it is important to study tensor products of the described
representations. This work is in progress; some results will be announced in [26]. In the
following paper, we also plan to discuss Galilei invariant equations for spinor and vector fields
and study the relationship between relativistic and Galilean approaches using the contraction
procedures described above.
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Appendix. Solution of the matrix problem (16), (17)

Here we find all indecomposable matrices A,B and C of dimensions n×n, n×m and m×m,
respectively, which are defined up to equivalence relations (18).

Multiplying equation (16) by A and using equation (17), we obtain the condition A3 = 0;
hence, A is a nilpotent matrix whose nilpotency index N satisfies the condition N � 3. This
implies that BC is a nilpotent matrix with index of nilpotency equal to 2. Thus, A can be
represented as a direct sum of the Jordan cells of dimension 3, 2 and 0 matrices. We shall
prove (see lemma 3) that in order to obtain indecomposable representations of algebra defined
by relations (4)–(6) it is necessary to restrict ourselves to the case of indecomposable matrices
A, and so there are three possibilities

A = A(1) =

0 0 0

1 0 0
0 1 0


 , A = A(2) =

(
0 0
1 0

)
, A = A(3) = 0. (A.1)

First, we suppose a priori that matrices A are indecomposable and find the corresponding
non-equivalent sets of matrices A,B,C satisfying (16), (17). To do this, we consider
consequently all matrices A enumerated in (A.1).

Let A = A(1), then n = 3 and so B and C are matrices of dimension 3 × m and m × 3. It
follows from (17) and (16) that

B =

 0 0 · · · 0

0 0 · · · 0
b1 b2 · · · bm


 , CT =


c1 c2 · · · cm

0 0 · · · 0
0 0 · · · 0


 (A.2)

and

b1c1 + b2c2 + · · · + bmcm = −1,

where CT is a matrix transposed to C.
Up to equivalence transformations (18), we can choose

bm = 1, c1 = −1, b2 = b3 = · · · = bm = 0, c2 = c3 = · · · = cm = 0.

(A.3)

Substituting (A.2), (A.3) into (14), we come to matrices ηa which are direct sums of
10 × 10 indecomposable matrices and (m − 1) × (m − 1) zero matrices. The related set of
matrices {Sa, ηa} with Sa given in (12) is indecomposable iff m = 1.

Certainly, for m > 1 the obtained realization for matrices A,B and C is completely
reducible too, since we can treat as A a direct sum of A(1) and the zero matrix of an appropriate
dimension.

If A = A(2), then B and C are matrices of dimensions 2 × m and m × 2, respectively.
Moreover, in accordance with (17) and (16)

B =
(

0 0 · · · 0
b1 b2 · · · bm

)
, CT =

(
c1 c2 · · · cm

0 0 · · · 0

)
(A.4)
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and

b1c1 + b2c2 + · · · + bmcm = 0. (A.5)

Up to equivalence transformations (18), we can specify four non-equivalent solutions for
equations (A.5):

b1 = b2 = b3 = · · · = bm = 0, c1 = c2 = · · · = cm = 0, (A.6)
b1 = 1, b2 = b3 = · · · = bm = 0, c1 = c2 = · · · = cm = 0,

b1 = b2 = b3 = · · · = bm = 0, c1 = 1, c2 = · · · = cm = 0,
(A.7)

b1 = 1, b2 = b3 = · · · = bm = 0, c1 = 1, c2 = · · · = cm = 0. (A.8)

Repeating the reasoning which follows equation (A.3), we conclude that to obtain
indecomposable sets of the related matrices ηa and Sa it is necessary to set m = 0,m = 1 and
m = 2 for solutions (A.6), (A.7) and (A.8), respectively.

For A = A(1), we have

B = (b1 b2 · · · bm), CT = (c1 c2 · · · cm),

where parameters b1, b2, . . . , bm and c1, c2, . . . , bm should satisfy relations (A.5). Thus, we
again have four solutions enumerated in equations (A.6)–(A.8) with the same restrictions for
values of m.

Let us summarize the results of our analysis as the following assertion.

Lemma 2. Let A be an indecomposable matrix of dimension n × n. Then up to equivalence
transformations (18) there exist eight indecomposable sets of matrices {A,B,C} (dimension
of B is n × m and dimension of C is m × n) satisfying relations (16), (17). These sets can
be enumerated by triplets of numbers (n,m, λ = Rank B), whose possible values are given in
(19), (20) and have the following form:

1. (n,m, λ) = (0, 0, 0), A,B and C do not exist.
2. (n,m, λ) = (1, 0, 0), A = 0, B and C do not exist.
3. (n,m, λ) = (1, 1, 0), A = 0, B = 0, C = 1.
4. (n,m, λ) = (1, 1, 1), A = 0, B = 1, C = 0.

5. (n,m, λ) = (1, 2, 1), A = 0, B = (10), C = (0
1

)
.

6. (n,m, λ) = (2, 0, 0), A = (0 0
1 0

)
, B and C do not exist.

7. (n,m, λ) = (2, 1, 0), A = (0 0
1 0

)
, B = (0

0

)
, C = (10).

8. (n,m, λ) = (2, 1, 1), A = (0 0
1 0

)
, B = (1

0

)
, C = (00).

9. (n,m, λ) = (2, 2, 1), A = (0 0
1 0

)
, B = (0 0

1 0

)
, C = (0 0

1 0

)
.

10. (n,m, λ) = (3, 1, 1), A =
(

0 0 0
1 0 0
0 1 0

)
, B =

(
0
0
1

)
, C = (100).

To complete the solution of equations (16), (17), we shall prove the following proposition.

Lemma 3. Let matrices A,B and C satisfy relations (16), (17) and A is decomposable. Then
the set of matrices {A,B,C} is decomposable too.

Proof. Since A is a nilpotent matrix satisfying A3 = 0, it can be reduced to a direct sum
of Jordan cells presented in (A.1) (any of the cells can be present with some multiplicity
M = 0, 1, 2, . . .).
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Let this direct sum include at least one matrix of type A(1), then we can represent the
related matrices A,B and C in the following form:

A =
(

A(1) 03×(n−3)

0(n−3)×3 Ã

)
, B =

(
B(1)

B̃

)
, C = (C(1)C̃), (A.9)

where B(1), B̃, C(1) and C̃ are matrices of dimensions 3 × m, (n − 3) × m,m × 3 and
m × (n − 3), respectively.

Substituting (A.9) into (16) and (17), we come to the following relations:

A(1)2
+ B(1)C(1) = 0, A(1)B(1) = 0, C(1)A(1) = 0, (A.10)

B(1)C̃ = 0, B̃C(1) = 0, (A.11)
Ã

2
+ B̃C̃ = 0, ÃB̃ = 0, C̃Ã = 0. (A.12)

Up to equivalence transformations (18), the general solutions of equations (A.10) are
given by relations (A.2), (A.3), which yield the following consequences of equations (A.11)
for the general form of matrices B̃ and C̃:

B̃ = (0(n−3)×1B̂(n−3)×(m−1)), C̃ =
(

01×(n−3)

Ĉ(n−1)×(m−3)

)
, (A.13)

where B̂(n−3)×(m−1) and Ĉ(n−1)×(m−3) are matrices whose dimension is indicated in the sub-
indices. In the following, these sub-indices will be omitted.

Substituting (A.13) into (A.12), we obtain the standard relations for B̂, Ĉ and Ã:

Ã
2

+ B̂Ĉ = 0, ÃB̂ = 0, ĈÃ = 0. (A.14)

In accordance with (A.9), (A.10), (A.13), (A.14), the matrices A,B and C are nothing
but direct sums of matrices satisfying relations (16), (17):

A = A(1) ⊕ Ã, B = B(1) ⊕ B̃, C = C(1) ⊕ C̃,

so the set of matrices (A.9) is decomposable.
In an analogous way (but using equivalence transformations (18) also), we prove the

complete reducibility of matrices {A,B,C} if A is decomposable and A2 = 0. To do this, it is
sufficient to use the decomposition of type (A.9) where A(1) → A(2), A(2) is the 2 × 2 matrix
given in (A.1) and B(1), C(1) are matrices defined by equations (A.4) and (A.6). Finally, for
the case where A is the zero matrix of dimension n > 1, the proof of complete reducibility of
the related matrices B and C reduces to direct use of equivalence transformations (18). �

We see that a priori requirement that matrix A is indecomposable which we use in lemma
2 does not lead to loss of generality and so the list of matrices presented there is complete.
Substituting these matrices into formula (14) and considering the related spin matrices (12),
we obtain the list of basis elements of the algebra hg(1, 3) which is given in table 1.
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dimensional Lie algebras Rev. Math. Phys. 12 1505–29
[24] Mickelsson J and Niederle J 1972 Contractions of representations of de Sitter groups Commun. Math.

Phys. 27 167–80
[25] de Montigny M, Khanna F C, Santana A E and Santos E S 2001 Galilean covariance and the non-relativistic

Bhabha equations J. Phys. A: Math. Gen. 34 8901–17
[26] Nikitin A 2006 Galilean vector fields: tensor products and invariants with using moving frames approach IMA

Summer Programme ‘Symmetries and Overdetermined Systems of Partial Differential Equations’ (Minnesota
University, 17 July–4 August 2006) http://www.ima.umn.edu/2005-2006/SP7.17-8.4.06/abstracts.html

http://dx.doi.org/10.1073/pnas.39.6.510
http://dx.doi.org/10.1088/0305-4470/13/7/015
http://dx.doi.org/10.1063/1.1664527
http://dx.doi.org/10.1007/BF01038008
http://dx.doi.org/10.1063/1.1705013
http://dx.doi.org/10.1023/A:1024485810807
http://dx.doi.org/10.1215/S0012-7094-51-01817-0
http://dx.doi.org/10.1063/1.1724208
http://dx.doi.org/10.1007/BF01645690
http://dx.doi.org/10.1088/0305-4470/34/42/313
http://www.ima.umn.edu/2005-2006/SP7.17-8.4.06/abstracts.html

	1. Introduction
	2. Definitions and properties of the Galilei group and its Lie algebra
	3. Spinor representations
	4. Vector representations
	5. Examples of Galilean vectors
	6. Contractions of representations of Lorentz algebra
	7. Galilean linear spin-1/2 wave equation with Pauli anomalous interaction
	7.1. Reduction approach
	7.2. Direct approach
	7.3. Galilean system with spin--orbit coupling

	8. Discussion
	Acknowledgments
	Solution of the matrix
	References

